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A NEW AUTOREGRESSIVE TIME SERIES MODEL

IN EXPONENTIAL VARIABLES

(NEAR())

by

A. J. Lawrance and P. A. W. Lewis

University of Birmingham Naval Postgraduate School
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SUMMARY

'A new time series model for exponential variables having first

order autoregressive structure is presented. Unlike the recently studied

standard autoregressive model in exponential variables (EAR(l)), runs of con-

stantly scaled values are avoidable, and the two parameter structure allows some

adjustment of time nonreversibility effects in sample path behavior. The

model is further developed by the use of cross-coupling and antithetic

ideas to allow negative dependency. Joint distributions and autocorrelations

are investigated. A transformed version of the model has a uniform marginal

distribution and its correlation and regression structures are also obtained.

Estimation aspects of the models are briefly considered.

KEYWORDS: Autoregressive model in exponential variables; Negative correlation;

Cross-coupled processes; Antithetic variables; Correlated uniform

process: Time series; Point process; Simulation.
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1. INTRODUCTION

In this paper we begin by introducting a new two-parameter model,

to be called NEAR(1), first mentioned in Lawrance (1979), for a first-order

autoregressive time series with exponentially distributed marginals. The

model is a first-order Markov process. Suitably choosing one of the

parameters as a function of the other produces a one-parameter first-

order autoregressive process which can give any value of the lag one

autocorrelation between zero and one. One particular model produced in

this way is the EAR(l) model introduced by Gaver and Lewis (1980); this

model had the problem that a "zero-defect" caused successive values of

the process to be, at times, fixed multiples of the previous values. The

NEAR(i) model does not have this defect except for the EAR(l) special case

and thus seems much more suitable than the EAR(l) model for the modelling

of real data. In addition, the fact that there are two parameters

indexing tie dependency structure of the model allows one to consider

sample path behavior as well as the customary fitting of the first and

second order moments to the data. The model is defined in Section 2.

At another extreme from the EAR(l) model, a one-parameter model

(TEAR(l)) is produced which is much easier to extend to higher order

autoregressive structureg than is the EAR(l) model (Lawrance and Lewis,

1980). However while it has no zero defect, this TEAR(l) model produces

realizations which, for high serial correlation, tend to run up most of

the time; for the general NEAR(l) model these aspects can be adjusted.

A one-parameter model which can mimic some of the time-reversible char-

acter of normal AR(l) pruesses is produced from the NEAR(l) model by

requiring either that the probability of a jump up from one value to

the next be one-half or requiring that the first directional moments be

• + ... 7 77 ' - ,.. -..... . * * . ... , -. - .



equal. A property which the NEAR(i) model does not share with its special

EAR(l) case is additivity, so that extensions to Gamma marginals are not

automatic; other marginal distributions are possible with the NEAR(l)

structure but these are not discussed here.

An important property of the NEAR(l) models is that they are simple

random linear combinations of independent exponential variables and there-

fore easy to simulate. This simplicity is bought at the price of auto-

correlations which are nonnegative.

The second thrust of the paper concerns alternation and negativity

of autocorrelations; this will be achieved by a scheme coupling two antithetic

NEAR(l) sequences, a scheme introduced by Gaver and Lewis (1980) for the negatively

correlated EAR(l) process. The resulting model, to be called the NEARA(1),

includes both the NEAR(l) and hence TEAR(l) as special cases; it has auto-

correlations which alternate into negativity under a geometrically decaying

envelope. However, simulation of the negatively dependent models involves

random linear combinations from independent pairs of negatively dependent

exponential variables, and this can be complicated. Most developments in

the paper are undertaken for the general NEARA(1) model, and further detail-

ing of results are given separately for the positive and negative dependency

cases. In particular, the paper deals with the allowable range of lag one

autocorrelations, lag r bivariate distributions, exponentiation of the

models to have uniform marginal distribution, and aspects of time reversi-

bility, sample path behavior and estimation.

Simulation aspects of the models are discussed in Lawrance and Lewis

(1980); detailed graphical representations of different sample path

behaviors are also given there.
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2. CONSTRUCTION OF THE MODELS

The conventional linear autoregressive model (AR(l)) with exponential(X)

marginal distributions (Gaver and Lewis, 1980) takes the form

0 w.p. P

Xn - PXn_ 1 + n 0,1,2,... , (2.1)

E w.p. 1-p

where p is a parameter (0 < p < 1) and the E , n = 0,1,2,... are inde-

pendent exponential variables with parameter X > 0. This EAR(l) model has

serial correlations of order r, p corr(X X given by P and gen-

erates sample paths in which large values are followed by runs of falling

values with geometrically distributed run-length. The large values arise

when En is included, while the falling values stem from the selection in

(2.1) giving only X = PX This behavior is likely to limit the broad

applicability of the model, although it can be overcome the more complicated

moving-average and mixed moving average-autoregressive developments (Lawrance

and Lewis, 1977, 1980a; Jacobs and Lewis, 1977).

An alternative exponential first-order autoregressive Markov

model is obtained by interchanging the independent and identically distri-

buted variables Xn_ and E in (2.1); this can have no effect on then-l n

exponential(X) marginal distribution of X n's. Proceeding this way, with

p replaced by 1-a, we have the model

Xn = (l-a)En+ n - O.k,2,... (2.2)

0 w.p. i-a

This exponential AR(l) model, called TEAR(l), is again Markovian and has

r
the a correlation structure of the EAR(l) model; it is, as will be shown
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later, particularly tractable analytically. The characteristic behavior of

realizations generated by this model (particularly distinct when a is

large) is that of runs of rising values (with geometrically distributed

run length) when the selection (l-a)En + Xn is being made, followed by

a sharp fall when the selection (I-a)E n  is made without inclusion of the

previous value. Illustrations of these effects both for the EAR(l) and

TEAR(l) models are given in the simulations of Fig. la and Fig. lb. These

simulated sample paths use the same simulated exponential error sequence

{E}.
n

Broader behavior in realizations generated by an exponential model

can be obtained from the model in which the X of (2.2) is scaled by
n-l

a coefficient B. This gives the proposed NEAR(l) model (Lawrance, 1980)

as

X~ ~ B =.P a ,,,. 2
n n 0

x n n + 0 w.p. 1-a n 0,1,2,... (2.3)

where the existence and distribution of the i.i.d. {E } sequence which
n

makes the X 's in the stationary case have exponential(X) distributions,n

needs to be established afresh. We now show that e must have a

particular mixed exponential distribution.

Let the Laplace-Stieltjes transforms of the X and e variables

be denoted by

Ix(s) = E{e - s xI and 4 (s) =E{e-sc } 
. (2.4)

Then (2.3) gives, if we assume stationarity,

4



(s X ( s )  X + Bs X(25
(s 0 x(8S) + (1-a) X + s X + (1-)Bs

on using x(s) = X/(X+ s). Thus, providing a and 8 are not both equal

to one, C can be generated from an E by the exponential mixture
n n

[ n 1 - (l-ci)8

= n 0,1,... (2.6)
n I 8(I~-ci)SEn  wp 1 - (1-ct)8

When a - 0 or 8 = 0 the {X ) are exponential i.i.d., whereas with
n

a = 1 the EAR(l) model (2.1) is obtained with p, = 8. When 8 1 the

TEAR(l) model is obtained. Thus the two-parameter exponential, first-order,

autoregressive Markov NEAR(l) model can be expected, for fixed serial

correlation of lag 1, p1 
= a8, to model broader behavior than is obtained

in the extreme cases (a = 1 or 8 1=). In particular a and B can be

chosen to produce both runs of ascending and descending values, intermediate

to the profiles of EAR(l) and TEAR(l) models, as was illustrated in Fig. la

or Fig. lb. Figure ic represents an intermediate case which will be discussed

in Section 8. Note that the correlation is the same, 0.75, in all three figures.

It is also clear from the Markovian nature of the model (i.e. that

conditional on X = xn_1  the distribution of subsequent values

Xn, Xn+l' "'" is independent of Xn-2, Xn_3, ...), that if X0  is

exponential(X) and independent of El, E2, ... , then the process Xn

n = 1,2,... is stationary. Note too that the NEAR(l) model is, by

definition, explicitly (physically) autoregressive and thus not only auto-

regeressive in the sense that E(XnIXn_1 = x) is a linear function of x.
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We note too that the NEAR(l) model gives a solution 
to the (random)

stochastic difference equation

Xn = AnXn-l + B , n 0,1,2,... (2.7)

discussed by Vervaat (1979) in which A = 6 w.p. a and A = 0 w.p. (1-a):
n n

Vervaat's paper discusses questions of existence and infinite divisibility

applying to the model (2.7).

In the NEAR(l) model the parameters a and 6 are nonnegative.

k
Therefore the autocorrelations pk (cz) are positive and geometrically

odecreasing. This is unlike the standard AR(1) model with, say, normal

marginals, where p1  can be negative, so that the autocorrelations can

alternate between positive and negative values with a geometrically

decreasing envelope. To extend the exponential models to the situation where

there is a possibility of alternation in the autocorrelations and negative

correlation requires some sacrifice of simplicity. As noted in Section 1,

the primary idea here is to cross-couple two sequences {X ) and {X'1
n n

with identically exponentially distributed marginal distributions across

an independent bivariate sequence {C n e'} of negatively correlated

n

and marginally identical variables. This final development produces our

so-called NEARA(l) model; it is specified by the equations

1 w.p. a

Xn = +6VnXi' Vn = p
0 w.p. 1-a,

n 0,1,2,... (2.8)

1 w.p. a

X' E'+V'X V

0 w.p.
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where the serially independent binary pairs V and V' generally have
n n

negative dependency. Some insight into the model comes from seeing that

X is positively dependent on X'_; this is negatively dependent on X

so making X and X negatively dependent. Though defined compactly
n n-l

in terms of the two processes, the interest here is in the marginal process

X . A univariate description of X is possible and given at equationnl n

(3.2).

The special case of the bivariate sequences {en' '} and {Vn, V'}
n n n n

in which E = E' and V V' recovers the NEAR(l) model. The special
n n n n

case when, a = 1 will be called the TEARA(1) model.

Detailed aspects of the sequence {X } depend on the joint distri-
n

butions of {C, '} and {V , V'}, though the marginal distributions of
rJ non n n

E and c' must be as at (2.6) for X to be marginally exponential. For
n n n

instance for the TEARA(1) model, strongest alternation in serial correlations

is obtained when the Ie E') are maximally negatively correlated expo-
no n

nential variables and therefore are antithetic pairs, and similarly for

the binary pairs {V, V'}. For the broader NEARA(1) model, (2.8),
n - I

negatively correlated mixed exponential variables {n C'I are required.
n

Some of these aspects of the model are explored in general and for specific

{En F'} and {V , V') distributions in Sections 4 and 5. In this
no n n n

respect this paper extends results and details for the negatively correlated

EAR(l) model given by Gaver and Lewis (1980).

Note that while {X , X'} is a bivariate Markovian model, the
n n

full Markovian property of X individually is lost unless it reduces ton

the NEAR(l) model; that is to be expected from the cross-dependency built

into the model.
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3. AUTOCORRELATION STRUCTURE OF THE MODEL

The simple autocorrelation structure of the NEARA(1) model, as

given at (2.8) by

X + e X X1 e+ "'X(31
n n nnl' n n nn-l (3.1)V|

is best approached by recursively expressing the dependency of Xn onAI
either X' 1 , X X' X , and so on. Directly from (3.1) itXn- Xn-2' n-3' Xn-4' '

can be noted that the distribution of (X n,X n) is simply expressed in

terms of the distribution of (X V,X l): in fact, this latter joint

distribution, equivalently (X ,X'), plays a central role in the process.n n

- However, substituting for X' in the first equation (3.1) from then-

second, gives

X = C + 8V 61 + a 2  (3.2)
n n n n- 1 n-in n-2

Hence the joint distribution of (Xn,Xn_ 2 ) does not need to be expressed

in terms of (X ,X') and this is very convenient. Generally, there is this
n n

distinction between the odd-r and even-r cases of (X n,X nr). This is shown

in the following key expressions which are obtained by repeated 
substitutions;

X= Sn + 8V I + 8 2 V'Vne_ + ... +(ri ,  .. ninrl
n-n n - n-r+2

+V'VnXn); (r odd) (3.3)

n2 8r-lv "'" Vn 'n

x C + V ' + a V +(, V VI -V r' l
n n n n-I n-lncn-2 n-r+2  n-In n-r+l

'+(rVnr V- Vnxn ). (r even) (3.4)

n-r+l n-i n n-r

8



The autocovariances of {X n follow easily from (3.3) and (3.4). Onn

noting that the indicator variables {V I occur independently in the

products, we have

E(V .- V a r (3.5)
n-r+l n-l n

and hence

(aa) r Var(Xn-r) (r even)

Cov(X X (3.6)
4 nP -

(W8)r CoV(X X'-) (r odd)

In terms of correlations, this central result becomes

W r (r even)

Corr(Xn , (3.7)
() Corr(X ,X') (r odd)

Alternation of these autocorrelations under a geometric envelope is evident;

negativity of the odd lag correlations requires the negativity of

Corr(Xn,Xn). For the simpler NEAR(l) model in which X f X' the Markov
n n n n

(a$)r correlation structure is evident.

For the NEARA(1), an investigation of Corr(X ,X') is required.
n n

To this end, multiply together the respective sides of the two equations

(3.1), giving

XX' i Cn C' + aV'C X + aV n'Xi + 82 VnVX i (3.8)
n n n n n nn-l n nn-l n nn-l n-1

and take expectations. Let

E Cov( n C') and V = Cov(V nV') (3.9)
n' n n Vn

9



and assume stationarity. Then following from (3.8) there is the result

2 2 2
Corr(Xn ,Xn) - (E + 8 v)/{l - (a +v)8 1. (3.10)

The important conclusion is that maximum negativity of Corr(X ,X') is
nfn

obtained, for any fixed values of a and 8, for maximum negative correla-

tions within the pairs (E n n ) and (Vn,Vn'). The proof is omitted.

Obtaining this maximum negative correlation by the use of antithetic

variables is developed in the next section.

4. ANTITHETIC ASPECTS OF THE MODEL.

It is simplest to deal first with the binary (V ,V') variables;
n n

the basic antithetic idea is to relate the distribution of V to a
*1 n

monotonic transformation of a uniform variable U on (0,1); then V'
n

is the same transformation of 1 - U which also has a (0,1) uniform

distribution. The variables V and V' are then maximally negatively
n n

correlated. Thus, we define

V = 1 if U < a V' = 1 if 1-U < a or U > 1-an n -- n n -- n -

V = 0 if U > a V, = 0 if 1-U > a or U < 1-
n n n n n

The resulting joint distribution takes one of two forms, as given below,

depending on whether a < 1/2 or a > 1/2:

10



V 1 0 V V 1 V9
n n n n

V' 1 0 cc V' V 1 2c%-l 1-a an n

0 ax 1-2a 1-at 0 i-at 0 1-ai
(4.1)

V a 1-a 1 V n x 1-a 1
n n

(a < 1/2) (a > 1/2)

Te2 2

The resulting covariances are V -ax for 0 < a < 1/2 and v (1i (1-)

for 1/2 < a < 1; the corresponding correlations are thus -a/(l-a) if

0 < a < 1/2 and -(l-a)/a if 1/2 < a < 1. The a = 1 case is exceptional

and is excluded since it leads to the negatively correlated EAR(l) model

treated in Gaver and Lewis (1980).

Next we consider how to obtain a bivariate mixed exponential dis-

tribution for (Encn) having maximum negative dependency. In the case

of positive continuous random variables, the maximum negative correlation

is obtained by the antithetic pair (Moran, 1967). However, with (e ,cn)
n n

having mixed exponential marginals, the full antithetic distributions

cannot be obtained explicitly since the inverse distribution function F-()

cannot be obtained explicitly. An alternative way of obtaining negatively

correlated (FnC') begins by noting that
ng

c = K E and C' = K'E' (4.2)
n n n n n n

where marginally, from (2.6),

11



i w.p. (1-8)/{1-(1-t)8}

KnK'= 
(4.3)

(l-a) w.p. B/{1l-(l-)8},

and E, E' are exponential(X) variables, marginally. The dependency of
no

E and c' is then given by
n n

Cov(C ,c') = (X-2 + CE)CK + [E(K)]2 CE (4.4)

where CK is the covariance of K and K' and C is the covariance

n n E

of E and E'. Although any negatively correlated bivariate exponential
n n

can be used for (E,E'), the most negative correlation is attained in the

(degenerate) antithetic case. The antithetic choice for (K ,K'), whoseI no n
distribution follows (4.1) with a replaced by (l-8)/{l-(-)B}, does

not involve degeneracy. These antithetic choices should give a negatively

correlated mixed exponential pair (cnC') whose correlation is almost

as negative as the true antithetic bivariate mixed exponential pair.

Note that the distribution of this bivariate mixed exponential pair

(C ,€ ) is a little complicated in view of the break in form of the
n n

antithetic distribution of the binary pair (K ,K') at (l-8)/{l-(l-)8} - 1/2
no n

or 8 = 1/(i+). Covariance calculations using (4.4) then give the result

I (i-2z8)(l-r 2/6) - (a8) 2  for 8 < i/(l+a)

A- 2Cov(C ,e') = (4.5)
no n 1

(l-ci)8(2-a6 -6)(l-r 2/6)-(l-8) 2  for 8 > i/(l+a).

12



This expression will now be used in determining explicit results for the

first autocorrelation of the NEARA(l) model. Other less degenerate

negatively correlated exponential random variables can be used; the

simplest and most easily utilized one is given by Gaver (1972).

A

5. THE FIRST AUTOCORRELATION

The first autocorrelation of the NEARA(1) model can now be obtained,

and its range of values will be determined, both generally and in the

8 = 1 case, the so-called TEARA(l) model. Interest is in the degree to

which negativity can be attained, bearing in mind that with exponential

marginal distributions there is a theoretical lower bound of (1-f 2 "6) --0.6449

on the correlation. From (3.7), (3.10) and (4.1) we have

aBE-(aa) 3  for 0 < a < 1/2

Pl = C rr(Xn Xn-l) = (5.1)

a{E-(l-a)28 21/{l-(2a-l)82I for 1/2 < a < 1.

This result is combined with E from (4.5) to give the most general

expression

aO(l-2aa)(1-T2 /6)-2(a) 3 , 0 < a < 1/2, 8 < i/(l1u)

a8 2(l-a)(2-a-_8)(l- 2/6)-aB(l-8) 2-(aB) , 0 < a < 1/2, 8 > l/(l+u)

P1  {8(l-2a)(l-2/6)-(a8) 3a(l-a)283)/{-(2a-l)2 (5.2)

1/2 < a < 1, 8 < 1/(l+a)

{a(l-a)8 (2-a8-8) (1-r2 /6)-a8(I-8) 2-a(l-a) 28 3/{I-(2a-l)8 2

1/2 < a < 1, 8 > 1/(l+a).

13



In the TEARA(1) special case (0 = 1) there is the simpler result:

cs(it) 2(1_2/6) _ a3  0<a l/ 2

1 2 2 3ii a(l-a) (1-itf /6) - a~la 1/ < a < 1/
3(5.3)

a(-)(-r2/)- ai/a 12 <

The maximum negative value for (5.3) is at a 1/2, the join point of

the two monotonic parts of (5.3), and here p 1 = -0.2056. A grid of

values of P1 for NEAR(l) models with a = 0(0.1)0.9, 6 0(0.1)1.0

is given in Table 1; it is seen that the point (a,B) = (0.5,1) also

gives the overall maximum negative value.

These bounds do not come very close to the theoretical lower bounds

of -0.6449; however, it must be recalled that this is only obtained in

the highly singular case in which one variable is a function of the other.

In fact, exponential antithetic pairs are of the form {X, log(l-e-X)}.

Nevertheless, there is room for improvement, but our results seem the best

possible within the proposed type of model. For instance, in the TEARA(1)

case, it is perhaps worth noting that if the (V ,V') variables had been
n9fn

taken as identical, then the minimum pl value would have been -0.0632;

similarly if they had been taken as independent, then the minimum P 1

value would have been -0.1106. The negatively correlated EAR(l) process

of Gaver and Lewis (1980) has a corresponding minimum value of -0.125.

The overall negative dependency in the NEARA(l) process has a

much stronger influence on the sample path behavior than these negative

correlations suggest. A sample path for the TEARA(1) process with

a - .75 is given in Figure ld and shows the clear alternating behavior.

14



It is worth stressing that the negativity of p1  implies the

negativity of Corr(X ,X'); then by virtue of the general result (3.7)
nfln

there is strong alternation in the autocorrelations which parallels the

usual {pr, Markov correlation structure when p1  is negative. However,

in general the marginal NEARA(1) process is not a first-order Markov

process.

6. THE LAG ONE JOINT DISTRIBUTION

Following on from the first autocorrelation, the full joint distri-

bution of (X n,X n) is of interest in describing the process and match-

ing it with data. This joint distribution can be obtained from the NEARA(l)

model equations (2.8) with the use of Laplace-Stieltjes transforms; thus

,XnXnl (s,t) = E{exp(-SXn - tX )} (6.1)

= E{exp[-s(c + VX_) - tXnI]
+ n n-1 n-l

= E{exp(-se - tX 1 - asVX'_ ) }. (6.2)

Writing ( Cs) for E{exp(-sc )} and taking expectations with respect
n

n
to Vn, we have

Xn,Xnl (s,t) = OE (s){cX,X(tos) + (1-0X(t)}. 
(6.3)

The suffix n has been dropped from the right-hand side of (6.3) in view

of the stationary assumption; again the joint distribution of (X,X') is

required. However, when the simpler NEAR(l) model allowing only positive
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dependency is considered so that formally X = X', there is the simpler

result

4nXn(s,t) = 0 (S) {a x(aS + t) + (l-a) ox(t)}. (6.4)

where Ox(t) = A/(X+t). This can be inverted but the overall behavior

can be seen immediately. With probability 1-a there is a scatter of

values Xn = independent of the X variable, where as with prob-n n-l

ability a, X - + aX and is always above the line X = aX
n  n n-i n n-V

Returning now to the NEARA(1) model, the joint distribution of

(X,X') is required. By constructing Laplace-Stieltjes transforms from

each side of the model equations (2.8), it follows that

0XnXn(s,t) = E{exp[-s(n + V ) - t(C' + VnXn-) ]

X , n n n-l n nn-l"
n" n

4 ,(s,t) E{exp(-StV'X - $SVXnl . (6.5)

Now the joint distribution of (V ,Vn ) is available from (4.1) and so
nfl

Oxn Xn(S, t)

I - 2a + ci4x(as) + o x(Bt), 0 < a < 1/2

= @E,(s,t) (6.6)

(2a-l) X n lXnl (at,Ss) + (1-a) x(as) + (1-a) 0x(at)

1/2 < a < 1

It is seen that, for 0 < a < 1/2, OX X,(sgt) is immediately available

n n
in terms of E ,(s,t) whereas for 1/2 < a < 1 a recursive calculation

16



is required. This simplifies somewhat if it can be assumed that the joint

distribution of (E:,c') and hence the joint distribution of (X ,X') aren n

symmetric in s and t; there would be no point in assuming otherwise for

univariate modelling of {X 3.A certain amount of calculation then givesn

the final form of (6.6) as

" UN[(1-2at) +c{ a CX(s) + t X (at) IN4 F ,(S'tO, 0 < a( 1/2

X X (s,t) 00=~ (6.7)

n n (1-ca) I (2a-1)[ (aJ+ 1 s)+ (B t)1 T, * c(B sB t),
J=Ox i=0

1/2 < at < 1.

The series here can be summed in the Ba 1, TEARA(1) case when the joint

distribution of (e,c') is a bivariate exponential. In the NEARA(1) case,

the bivariate distribution which has been proposed at (4.2) gives

*~,(s,t) =E{exp(-sK E -tK'E')l (6.8)

and this can be expressed in terms of the joint Laplace-Stieltjes transform

*EEIs~t) of the underlying bivariate exponentials. Thus

EC= 2 -(l-ct)B E,E' EE (l-a)Bt) +~

1-(-aB < l/(lEu

and

17



¢€,E,(s,t) = 2 1-(l-a)a OEE'

+ 1l- 2 [0E,E'(s'(l-a) t)+ E,E,((l-a)st)],

8 > I/(I-c). (6.10)

The joint Laplace-Stieltjes transform of the distribution of (E,E') in

the antithetic case is given,with U a uniform (0,1) random variable, by

1

CE,E,(S,t) = E{exp[s log U + t log (1-U)]} = f uS(l-u) du (6.11)

u=0

which is a Beta function.

Both regressions from (Xn,X ) of the NEARA(l) model are non-
n n-1

linear; directly from the model equations (2.8), the forward conditional

expectation is

E(XiX1n_ = x) n (l-cS)X- I + Xgm(X_ I = x) (6.12)

The regression on the right-hand side is complicated but can be obtained

in the 8 = 1 TEARA(1) case. With positive dependency only, (6.12)

applies for the NEAR(l) with formally X'_ = X and so there is linear
n-l n-l'

regression in this case with

E(Xx) = (i-c) -X + cSx. (6.13)

7. THE (X n,Xn r) JOINT DISTRIBUTIONS; THE E SUM DISTRIBUTIONS

These distributions follow directly from the basic expressions (3.3)

and (3.4) where X is expressed in terms of X or X'. Expecta-
n n-r n-r

tions are taken over the independent VnV' 1 , ... in turn, with the

following results

18



n (s,t) = Ejexp(-sX - tXn)}X nX nrn n-r

-X'X'(t'rs) r odd

r (8s) + ai(l-a) (si) *x(t) "  (7.1)
i0 ¢xBi) (ars+t) eve (a s

In the = 1, TEARA(1) case, there is the more explicit expression,

XX(S~t) ar[ 4E()s]r {X'x,(st) r odd

- Ex(s+ t) r even

E 1- [E(l-a)s}+ (l-a) c@E{(-a)s} @x(t) 1 - ct' E('(la)s} '  (7.2)

In Section 8 these expressions are used to derive the autocorrelations

of the sequence after transformation to a uniform (0,1) marginal distri-

bution.
r

The distribution of the sums Zl Xni can in principle be

obtained from the expressions (3.3) and (3.4) in a similar way; for instance,

n n-I n Xn-l +Vn n-i (7.3)

X+Xn_ -Xn- 2 =cn + n i+ VnEn 1+(+ n 1 Vn)Xn_ 2 +6VnXn  2  (7.4)

Generating functions for these two sums can be written down, but the results

get progressively more complicated. There does not appear to be any simple

general result, even with the NEAR(l) model.
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8. RUN PROBABILITIES AND APARTIALLY REVERSIBLE PROCESS, PREAR(l)

We have already indicated in Figures la, lb, lc that the sample path

behavior of NEAR(l) processes c.,n be distinctive, and is adjustable through

the two parameters a ard B. Ths distinctive behavior makes the model

very rich and is principally observed as runs of increasing values (up-runs)

or runs of decreasing values (down-runs) or both (peaks). Such

behavior is not possible with Gaussian AR(l) models. In the discussion

which follows we will explain the parameterization of the process

illustrated in Figure lc, which exhibits a partial time reversibility.

A simple quantification of sample path behavior is given by

P(Xn < Xn-l which is related to the average length of up-run sequences.

Calculation of P(Xn < Xn) follows from (2.3) as

P(Xn < Xn) = (1-a) P(Xn_1 > En) + aP(Xn-i > E n + 8X)n-l

(1-a) P(Xn > Cn) + (l-a) P(XnI > E/(l-)) (8.1)
n- nn-

By using the definition of c given at (2.6) and the independence ofn

Xn_ 1 and n , the probabilities in (8.1) are easily calculated and give

P(X <X 1 ) -(1-a) + l+(1-a)J

+ -(!- )8l+I-) + [L' - 1(8.2)

( -a) + a(l-a) (8.3)

2[l+(l-a)81 (2-a)(l-a8)
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For the TEAR(l) process this probability (with 1 = ) reduces to

(l-a)/(2-a) and is thus always less than one-half, so indicating an

excess of up-runs; this is clearly illustrautd in Figure lb. A grid of

values of this probability for a, = 0.0(0.1)1.0 is given in Table 2.

The asymmetry of up-run and down-run sequences for most NEAR(l)

processes is evidence enough of their irreversibility in time. The value

of P(X < X ) and its difference from one-half gives one measure of this;
n n-i

another possible measure could be based on the difference between the

2 2
i directional correlations Corr(Xn, Xn 1) and Corr(Xn Xn-i); from

(2.3) these may straightforwardly be obtained as

CorrX _) =a (8.4)
n9 n-

Corr(X , Xn) = cS(l -ca + 2S) (8.5)

The equality of these two correlations suggests one definition of partial

reversibility, and for NEAR(l) processes gives the condition B = 1/(2-a).

The simulations in Figure lc are for this parametrization. Another

partial characterization of time reversibility Twould simply be that

P(Xn < Xn) = 1/2; surprisingly, for NEAR(l) processes, this second

definition also leads to the condition = i/(2-). Hence we shall

refer to the NEAR(l) process with a = 1/(2-a) as the partially reversible

or PREAR(l) process. It is not fully reversible, even as far as the

joint distribution of (X n, X n-l) is concerned, but it seems somewhat

remarkable that it is reversible in both the run-probability and

directional-correlation aspects.
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9. TRANSFORMATION TO A MULTIPLICATIVE PROCESS WITH UNIFORM MARGINALS

One useful aspect of exponential processes is that they provide a

suitable base from which to transform to other proccsses of positive variables;

they are particularly convenient for transforming to a multiplicative

uniform process; thus the transformed process {exp(-Xn )I is now considered,

with derivations of the autocorrelations and autoregressions.

When X has an exponential marginal distribution with parameter X,
n

the variable U = exp(-AX ) has a uniform (0,1) marginal distribution.
n n

The autocorrelations of the {U } sequence are easily obtained from then

joint Laplace-Stieltjes transform of the joint distribution of (X, Xn r ) ;

thus

Corr(U, U ) = {E(UnUn) - 1/4}/(1/12)
n n-r n n-r

= 12E{exp[-A(X n + Xn-r )1} - 3

= 12 nXXn r (X,) - 3 (9.1)

Working from (7.1) a reasonably explicit result for (9.1) is

obtained; the first expression to be considered is

r-11 2a r n ( X),

i=O

where E (s) is given by (2.5). After some cancellations, we get

r r- i r( (,i r
12a r H (B A) 6ar(i+ ) H f, + (l-ia)}I . (9.2)

iuO 1=1
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The second term of (7.1) and (9.1) is

r-i j
12(l-a) ai 11 F(siX) X(X) -3o i=o

r-i J 8i+i I

3(1-a) ai(l+B+l) H {1 + (1-a) - 3 (9.3)
j=o i=o

This does not look promising, at least not until the j - 0 term is taken

out and combined with the -3; the expression then becomes

3(1-a) ( J+ l )  + (i-a)8i+1} - I 
- 3c{l + ( -)8}-1

(l a Ul + 1-a)$ I-{l +(-6
j=l i=O

Next the term j=l is taken out and combined with the last term; this

yields

~~r-i l
3(l-a) 1 aj(l+8 J+l) 1 11+ (1-a)ai+l}- I - 3a2 H + (1-00 i+l}-1

j=2 i=O i=o

Continuing in this fashion gives the final expression

r

-3 r R { + (l-)81
-

i=l

Bringing together (9.1), (7.1), (9.2) and (9.4) gives
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-3rrr U -r+6a-() 6 -3 1

Cr1r(U,U)= 6r ( i/(2+,r) r odd ] ri

2+r ii (1 ( 8 ) (r even).2+8 r il l+(la)$i

This is the required result; it is computationally explicit in several

cases: the 8 = 1 TEARA(1) model, the NEARA(1) model for 0 < a < 1/2

and the NEAR(l) model for the full parameters region. This latter model

has as its transformed autocorrelation function

r
Corr(UU =- 3 ) , r = 1,2,... (9.6)2+8 i=l l+(l-a) 8 ..

The only case of (9.5) which is not available in closed form is the

NEARA(1) model for 1/2 < < 1. The series expansion from (6.7) for

OXX' (,,,r,) would require detailed examination; the lower bound of the

r-l case would be interesting.

We now derive the forward regression E(Un Un1 ) of the variables

in this uniform process; it has previously been remarked, equation (6.13),

that for exponential NEAR(l) variables this is linear. As for the auto-

correlations of transformed exponential processes, equation (9.1), a

a general result is available. Without going into details, this can be

writ ten

E(exp(-XX n)X =* (X, s-X) , (9.7)

where asterisk denotes Laplace-Stieltjes transform with respect to x

of argument s. Inversion in the NEAR(l) case gives the desired result
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E(UIU = u+ 1+8 + (9.8)
n - = I+(i-) (1 - + .

As to be expected it is non-linear. The corresponding backward regression

is also available from (9.7).

Finally, we note that the results from Section 8 on run behavior

apply here since the transformation used is monotonic; in particular the

uniform process is reversible in its run behavior under the condition

B= 1/(2-a). However, reversibility of the directional correlations will

not be achieved under this condition. lae directional correlations can

be obtained by similar methods to those used to obtain the ordinary

correlations.

10. ASPECTS OF ESTIMATION

Formal methods of estimation are rather intractable with the NEAR(I)

models: as an illustration, in the NEAR(l) case with just one observation

x after the initial value xO, the likelihood takes the form

af (xl- Bxo) B < xl/x 0 .

L(a,a;x1 ,xO) = (1-a) f (xl) + (10.1)
1 0 a > x 1lX0 ,

where f (.) is the mixed exponential pdf of the independent C

variables given at (2.6). With more observations, the full likelihood

becomes, in view of the first order Markov structure of this

model, the product of similar terms. The maximization

needs to be done numerically and because of singularities
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in the parameter space, the standard asymptotic theory of maximum likeli-

hood is inapplicable. A discussion of the problems in the a = 8

case of the NEAR(l) model is given by Raftery (1979). When a - I the

estimator proposed in Gaver and Lewis (1980) is the maximum likelihood

estimate (personal communcation from G. Weiss). In this section we limit

ourselves to ad hoc possibilities for estimation when a # 1.

The method of moments can be developed for the NEAR(l) model: use

can be made of the directional correlations (8.4) and (8.5). The

product a8 in (8.4) is best estimated by the first serial correlation,

rather than the sample directional coorelations. Then using the sample

directional correlation based on (8.4) an estimate of 8 can be obtained

and hence an estimate of a. Methods of improving the efficiency of these
.4

moment estimates are being studied. Use of the run probability given by

(8.3) is also a possible tool for estimation.

11. FURTHER DEVELOPMENTS

Further work on this topic is being directed at the estimation,

simulation and sample path aspects. Extensions of the model to mixed

exponential variables are also being developed.
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NEAR(1) PROCESS--EARI) CASE
ALPHA = .990, RHO = 0.75
BETA = .758

U-

.1 -

0 20 40 60 80 100
FIGURE la. Simulated sample path for the EAR(l) process of Gaver and Lewis (1980)

which is the special case NEAR(l) process in which a = 1.0. (Simulation

done with a = .99 to avoid computation problems.) For this case

PfX n < Xl I .78 and the runs of falling values are clearly

discernible.
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NEAk (i) PFOCESS--TEAR( ) CASE
ALPtHAW = 758, RHO = 0.75

BF I/A = .990

~1 LO

, L
k *1I '

ii

L L ILI
0 20 40 60 80 100

Figure lb. Simulated sample path for the TEAR(l) process, the special case

NEAR(l) process in which S = 1. (Simulation done with B - .99

to avoid computational problems.) For this case P{Xn< X n-} = 0.22

and the predominance of runs of ascending values is clearly

discernible.
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NEAR (1) PROCESS -- PREAR( l) CASE
ALPHA = .857, RHO = 0.75
BETA = .875

tO

0 20 40 60 80 1O0

Figure 1c. Simulated sample path for the NEAR(1) process which is partially

time-reversible in that the directional correlations are equal and

P{X < X I = 1/2. The parametrization for this PREAR(1) process

is a = 1/(2-a). Note that the same i.i.d. exponential sequence

{En I was used in the three simulations of Figures la, lb, 1c.

32



NEARA(1) PROCESS-TEARA(1) CASE

ALPHA = 0.75

BETA = 0,990

N

4, , J

00 20 40 60 80 tO0

Figure Id. Simulated sample path for the TEARA(l) process, the special

case NEARA(1) process in which = 1. (Simulations done

with 6 = 0.99 to avoid computational problems.) Runs of

alternating ascending values can be discerned, and are produced

by the negative dependency in the model; this compares with

the smoother run-up sequences in the TEAR(l) simulation of

Fig. lb.
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